

INVESTIGATION ON THE PERFORMANCE AND STABILITY OF Cs₃Sb₂I₉ BASED PEROVSKITE SOLAR CELLS EMPLOYING P₃HT AND CuSCN HOLE TRANSPORT MATERIALS

Brian O. Owuor

Dr. Alex A. Ogacho Prof. Francis F. Nyongesa Prof. Bernard O. Aduda

Introduction

Why solar cells?

- ◆Global warming as a result of combustion of fossil fuels
- Depletion of fossil fuels
- ◆Increase in global energy demand

Perovskite solar cells

- Low cost materials
- ♦ High efficiencies
- Simple fabrication process

Best Research-Cell Efficiencies

Lead toxicity and instability in humid condition

Antimony Sb – suitable to address lead toxicity

- more stable towards moisture

• Cesium Cs - Effective for improved stability compared to methyl ammonium (MA)

High performing PSC

•Hole-transport material- thermally stable, possess high hole mobility

- Spiro-OMeTAD possesses low hole mobility (≈10⁻⁴ cm² V⁻¹ s⁻¹)
 - Poor conductivity
 - Copper thiocyanate (CuSCN) higher hole mobility of about 0.1 cm² V⁻¹ s⁻¹, suitable energy levels, affordable and simplified synthesis routes
 - Poly (3-hexylthiophene) (P3HT) exhibit excellent thermal stability and high hole mobility

Objectives

Main Objective

Evaluate the effect of introducing P3HT and CuSCN hole transporting materials on the photovoltaic performance of Cs₃Sb₂I₉ perovskite solar cell.

Specific Objectives

•Design and fabricate the absorber layer using Cs₃Sb₂I₉ as the absorber material

Perform optical, electrical, morphological and structural characterization of Cs₃Sb₂I₉ perovskite layer for the perovskite solar cell applications
To investigate the role of P3HT and CuSCN hole transport layers on the photovoltaic performance and stability of Cs₃Sb₂I₉ perovskite solar cells.
Assess the charge transport and recombination mechanism of the fabricated perovskite solar cells using impedance spectroscopy and surface photovoltage.

Methodology

Deposition of Electron Transport Layer

- \bullet TiO₂ compact layer deposited by spin coating
- ♦Annealing

Deposition of active layer (perovskite layer)

 $Cs_3Sb_2I_9$ – Prepared by co-evaporation of CsI and SbI₃ in an evaporator

Deposition of hole transport layer (HTL)

- ♦P3HT and CuSCN –Spin coated on to perovskite layer
 - Thin film of gold (back electrode) will be deposited by thermal evaporation

Film/solar cell Characterization

- Optical characterization –UV-Vis spectroscopy
- Structural properties –XRD analysis
- Band gap shifts of perovskite thin films photoluminescence (PL).
- Deep & shallow defects in the films Photothermal deflection spectroscopy (PDS)
- Surface electronic structure of the perovskite layer x-ray photoelectron spectroscopy (XPS)
- Current density–voltage (*J*-V) characterization Solar simulator
- charge and mass (ion) transport processes in the cells electrochemical impedance analysis and surface photovoltage spectroscopy (SPS)

THANK YOU!!!